Archive for the ‘black holes’ Category

Zero Gradient Gravity Fields, Dark Matter, and the Formation of Stars

May 17, 2018

We’ve mentioned in the past (to ourselves) that the formula for the Schwarzschild radius for a black hole, c2=2GM/rs tells us that no matter how thinly distributed a mass is, (such as 1 atom per cubic centimeter), if you have a large enough sphere of it, it will have a Schwarzschild radius when viewed from outside that volume. You can see this just by shuffling the equation around a little, so that c2/2G, which is a constant, equals M/r, the mass over the radius. For any given density, the mass, M increases with the cube of the radius, so for any given density, you can always find a radius that contains enough mass to equal the value c2/2G. Cute, huh?

I struggled for awhile wondering if an infinite 3D field of particles (which would appear to be flat gravitationally, that is, not have a gradient), would allow for overlapping apparent black hole horizons; everywhere you looked, there would be large, overlapping, spherical volumes that had enough mass to become black holes. Could this be our apparent cosmological horizon? But today (5/12/18) it occurred to me that the key feature of a black hole is that it has a gravitational gradient. You have to work to get out of the gravity well, or the idea of an event horizon is meaningless. But an infinite field of equally distributed mass has no gradient. It appears flat. Ergo, no event horizon, no matter the density.

Cruising along in deep space, there is, in essence, the same amount of mass pulling on you from all sides, that tenuous 1 atom per cm3. It could just as well be 10 atoms, or 100, or a million, with no noticeable effect. Once we attained a velocity, we would maintain that velocity – an object in motion remaining in motion. The interstellar gas would eventually slow you down, but it would take a very ong time.

Working with the 1 atom/cm3 extending to infinity, let’s say we superimpose another huge sphere of 1 atom/cm3 gas on top of that, so huge that it provides you with an event horizon (if I’ve done my math right, it would amount to roughly 1.5×105 light years in radius, or a ball 0.3 million light years in diameter). Now there is a mass and a very small gravity gradient. Is the event horizon based on the 2 atoms/cm3, or the 1 atom/cm3 density? We’ve already seen that the original 1 atom/cm3 field provides no gradient, so it would make sense that the only effect to the observer is to see the event horizon created by the new 1 atom/cm3 superimposed on the existing field; the other previously existing field is completely flat and cancels out.

However, the new field created by the new mass is going to affect both the old mass (1 atom of hydrogen per cm3 everywhere) and the new mass (1 atom per cm3 in the giant sphere). The object will form with twice the mass (in this case) predicted by the theory. When it’s first put in front of us, we will measure a mass represented by the 1 atom/cm3 in that volume. As it collapses and takes the background mass with it, it will finally produce a mass that accounts for the 2 atoms/cm3 that we actually started with. While it’s doing this, it will also be backfilling the area that it vacated with more interstellar gas, as that gas is also being pulled in by the gravity of the developing black hole, so the overall density of the universe will appear mostly unchanged, even around the black hole.

Practically speaking, this would be more likely to happen in a nebula, where the density is much higher.

One of the most interesting things about this process is that if there is an undetectable mass-type in the universe (like dark matter) that only interacts with regular matter through gravitation, and it’s distributed equally everywhere, then objects that form (planets, Suns, black holes) will also pull in this other mystery mass. As described above, the tenuous gas (1 particle per cc) that we currently measure may actually mass 2 or 10 or 100 particles per cc. We wouldn’t know since the field is flat. Since this new mass doesn’t react with normal matter, it will clump in the center of the object (although it may have its own chemistry and volume that prevent excessive density). Small objects existing on a larger mass (like humans), would have the dark matter pulled out of them, and when we performed tests like The Cavendish experiment to measure the gravitational constant, it would give us a good value for G for normal matter, and would give us erroneous results for the masses of the planets and the Sun. We would think the core is made of denser matter than it really is, both in the Sun and Earth. We know the mass of the Earth, but a substantial chunk could be dark matter and we’d never know it. Perhaps the iron core is made of silicon at half the molecular weight (which is interesting, because magma is 50% silicon dioxide, and only 9% ferrous oxide).

However, most objects that have formed in the last few million years are going to have some dark matter as part of their core. They have gravity, and any dark matter out there will be attracted to it just like regular matter, until an object forms which is part dark and light matter. This includes asteroids. Eventually, we’re going to move an asteroid, and when we do, the acceleration is going to leave the dark core behind. We may not notice it unless we’re looking for it, or if it’s a substantial enough part of the mass that we detect a mass-change in the object as it’s propelled. We would end up with two objects; the obvious light-matter asteroid, and the invisible dark-matter asteroid that could only be detected with a gravitational gradiometer. It would change the way we thought about the universe.

Advertisements

Black Hole Evaporation versus CMBR

May 5, 2018

Black holes evaporate. At least, that’s what most physicists tell us.

What I stumbled into recently was a conjecture that they can’t evaporate beyond a certain point if the input is greater or equal to their output. This was mentioned on Quora by some physicist as a response to a related question. I thought it was interesting enough to mention it here.

Really large black holes are colder than the cosmic microwave background radiation (CMBR), which is about 2.73 degrees. The radiation going into a black hole is actually greater than the radiation leaving the black hole. The only way a black hole could radiate is if it’s very small and already radiating hotter than the CMBR (plus whatever particles fall into it, adding to its mass).

The limit where the size/mass of the black hole is equal to CMBR input is about 1% Earth mass, about 4×10^22 kilograms, based on Susskind’s formula and Hawking’s formula. This would create a black hole smaller than a millimeter. But black holes can’t even form without at least three or more Solar masses to begin with.

So, any black hole larger than a millimeter is going to keep growing. Presumably, primordial black holes smaller than 10^11 kg, created during the Big Bang, would have evaporated by now. This leaves a range of possible primordial black holes from 10^11 to 10^22 kg as possible existing evaporators, since they would be hotter than the background radiation.

However….

Primordial black holes would form because of high density and radiation. It would be crazy to think that their mass wouldn’t quickly grow far beyond Earth mass when surrounded by a buffet of dense gas and radiation. Just the nature of the formative process suggests that they will never radiate faster than mass/energy is added to them from their environment, and will always grow larger in size.

I really WANT them to exist, however. My next SF story kind of depends on it.

Black Holes and Those Pesky Event Horizons

October 8, 2017

In Leonard Susskind’s book, The Black Hole War, page 240, he states, “To a freely falling observer, the horizon appears to be absolutely empty space. Those falling observers detect nothing special at the horizon…” In Amanda Gefter’s book, she points out that the distant observer sees the event horizon, while the falling observer detects no event horizon at all. Of course, she took a lot of her ideas from Susskind. In the meantime, Hawking treats the event horizon as a fixed boundary where virtual particles can split apart (Hawking radiation).

black_hole_2013_0

I think none of these is right. The idea between the “escape velocity being faster than the speed of light” is relative to the delta between the gravitation potential of the observer and the potential at the event horizon. From an infinite distance, we observe an event horizon at a certain radius. Should the event horizon suddenly disappear if we are in an inertial frame starting our fall into the black hole? Starting at what distance? A thousand miles? A light year?

The more likely result is that the event horizon moves inward as you approach it. You are in a deeper gravity well as you approach the black hole, thus the difference between your local gravity potential and that of the event horizon, to maintain a high enough value for the escape velocity to equal the speed of light, requires that the event horizon continuously move away from you (toward the singularity) as you move toward the singularity. You never quite catch up with it. There’s a Wikipedia article that says this explicitly, but then, it’s a Wikipedia reference (Event Horizon). Sometimes they’re wrong, but usually they’re dead-on.

An interesting consequence of this is that if you maintain a certain orbit near the event horizon, and your version of the event horizon is closer to the singularity than that of a more distant observer, then a photon just outside your observed event horizon could reach you just fine, even though it cannot reach the more distant observer. Having received that photon, you could transmit the data from it outward, (boosting the frequency) as the distance from your gravity well to the distant observer requires an escape velocity somewhat less than the speed of light. Is this a loophole?

Why, then, do we think that a photon below the event horizon (for the observer at infinity) can’t escape the confines of the black hole? Is it only because it would be red-shifted to a zero frequency? Or is that false?

Escape velocity is merely a calculation of the velocity required to go from one gravity potential to another. If you are already in a gravitational well (like the outer edge of the Milky-Way galaxy) with an escape velocity of 300km/s, this has no effect on the escape velocity from Earth (11km/s), or the velocity needed to orbit Earth (7.5km/s). Likewise, consider a photon trapped just beyond the event horizon as viewed from an observer at infinity. To the guy in orbit around the black hole, the difference in potential is much smaller, and his relative event horizon is closer to the singularity. Won’t he see that photon? Can’t he receive it from the domain outside his apparent event horizon, but inside the event horizon of the observer-at-infinity? And then capture the photon and retransmit it?

So, even though a photon by itself can’t escape the event horizon of the observer-at-infinity, an intermediate process (natural or human) could conceivably pass a photon up through overlapping light cones, even though the light-cones at either end don’t overlap. This might eliminate the question of whether information can escape a black hole or not. The infalling observer can see what’s happening beyond the outer event horizon, and pass the information on, since his own event horizon is even closer to the event horizon.